金沙澳门官网58588-金沙城娱乐场网址大全-首页

当前位置:主页 > 资讯资讯 > 行业动态

行业动态

服务支撑

及时为您解答疑惑解决产品疑问请拨打咨询热线
咨询热线:

400-845-0788

021-60778788

售前咨询:

周 经 理

13601920788

在线客服:
为您提供全方位的服务方案
行业动态

处理小电流接地故障的新思路

来源:admin ??发布时间:2018-10-06 06:34


处理小电流接地故障的新思路

 
中低压配电系统的中性点,一般采用不接地或经消弧线圈接地方式方法,称为小电流(Electron flow)接地系统。高压直流发生器电压调节稳定度高,全量程平滑调压,输出电压调节采用进口单个多圈电位器,升压过程平稳,调节精度高,并设计有粗调和细调功能。电压调节度优于0.1%,电压、电流测量误差小于1.0%,脉动因数优于0.5%。该系统中发生单相接地故障(fault)时,尽管故障分量不大,但由于其他两相对地电压升为线电压,在没有消弧线圈的情况下,如果发生间歇性弧光接地,由于中性点没有电荷(electric charge)释放(release)通路,会引起过电压,系统绝缘受到威胁,容易发展为相间短路。因此,及时对接地线(别称:避雷线)路采取隔离措施很重要,现在的变电站对这种接地故障,都采取了不同手段的选线措施。为此在已有选线措施的基础上,进一步结合其他技术对接地故障处理措施进一步优化,使故障造成的停影片响(influence)降到最低。
1 重合闸(zhá)技术的应用
重合闸技术已经广泛应用在所有电压等级的架空线路保护中,运行实践表明,重合闸技术对提高电力系统的安全稳定运行,以及供电可靠性都起到不可忽视的作用。直流高压发生器采用了九十年代新技术、新材料和新器件,具有输出功率大、体积小、重量轻的特点,有可靠的过压、过流及零位合闸保护功能,带0.75倍电压锁存功能,并配有时间继电器,能在试验中设置定时声讯报警。那么是否可以将重合闸技术引入到小接地故障(fault)处理(chǔ lǐ)中呢?
首先需要分析(Analyse)接地故障的时间分布情况,根据资料统计,架空线路绝大多数故障是瞬时故障,连续记录到的接地故障录波报告中,340次接地故障的录波记录中有2次是直接的永久性接地故障,另有2次是电弧接地发展为相间接地,其余的336次均没有发展为永久性故障,占全部故障的98。高压直流发生器电压调节稳定度高,全量程平滑调压,输出电压调节采用进口单个多圈电位器,升压过程平稳,调节精度高,并设计有粗调和细调功能。电压调节度优于0.1%,电压、电流测量误差小于1.0%,脉动因数优于0.5%。82%。在336次瞬时故障中,有101次超过2 s,有24次超过10 s,最长的一次持续时间达到5 min。如表1所示。
表1 接地故障持续时间统计
不妨将上面的统计情况分成两个处理区段,A区段的故障持续时间很短,电弧可以很快自动熄灭,甚至小接地选线装置还没有发出试跳命令,故障已经消失。
B类型接地故障(fault)有一定持续时间,这种故障大多数情况下可以自行熄灭,但在其中一种情况下,电弧还有一定的顽固性,有的持续10 s以上。其中B2类根本就是永久性故障,没有办法自行消除。
由上面的统计可得到如下结论:A类故障不需要重合闸,因为还没有等到选线措施起作用,它已经自行消失,甚至连选线措施都不需要。
而B1类型故障因为有一定持续时间,所以在故障还未消除时,采取措施切除故障使接地点的电弧熄灭,然后再合上开关即可继续正常运行。假设选线装置可以在1 s内选出故障线路,且选跳成功,然后经过1 s再重合开关成功,那么就相当于使得3~300 s的接地故障在2 s内得到解决,而由此缩短了接地电弧的持续时间,也就减少了弧光谐振和由接地电弧发展为相间故障的概率,对配电网的可靠运行有一定的现实意义。
B2类型故障属于永久性故障,重合闸后故障依然存在。可以在接地选线装置中,设置2次跳闸(tripping)来隔离故障。
综上所述,在选线装置中增加一个重合闸环节,就可以使得所有选线装置动作的情况(Condition)下,40%以上的故障强度减弱。对于B0类型故障,客观地说因为选线试跳和重合闸的短暂停电,对故障消除的意义不大,实践中可以调整选线试跳时间和重合闸时间加以优化。对于B2类型故障,经过重合闸依然存在,那么可以提醒运行人员,线路中确定存在永久性接地故障。
重合闸(zhá)技术对接地故障的意义在于,与选线技术配合,及时熄灭接地电弧,在瞬时性故障情况,重合闸成功后馈线继续供电,可提高供电可靠性。那么对于永久性接地故障情况下,又如何缩小故障带来的负面影响,提高供电可靠性呢?
2 馈线自动化技术的应用
馈线自动化技术是配电自动化领域的一部分,在设有馈线自动化系统的配电网中,每条馈电线路都被分成若干个线路段,段与段之间用馈线分段开关相连,而馈电线路对侧又往往与另一变电站相连,对于两侧都有电源的馈电线路,一般都在线路中某个分段开关处,断开形成单边供电的情形,如图1所示。
基于配电网络的这一特性,就可以通过其中一种手段将故障区段找到,从而减小由于故障造成的停电损失。以电压重合型馈线系统为例,具体实现途径如下。
在每个分段开关对应的重合装置上,配置如下的功能;当分段开关两侧均无压时,可以延时跳闸(zhá),分段开关一侧有压,另一侧无压时经延时合闸(即恢复性合闸),合闸瞬时监测(Food Monitor)到故障(fault)分量,马上跳闸并闭锁再次合闸。当线路中C段发生永久性接地故障时,线路的断路器经选线跳闸和重合闸后,零序电压依然存在,于是断路器再次被跳开,此时线路中
  A、
  B、
  C、D线段失压,于是:
t1延时后,
  A、
  B、c三个分段开关因各自重合装置两侧失压而跳开。
t2延时后,由配电自动化系统发令合上线路出口断路器,线路没有出现零序电压。
t3延时后,a处重合装置合上相应分段开关线路,没有出现零序电压。
t4延时后,b处重合装置合上相应分段开关线路,出现零序电压,b处分段开关马上跳闸(tripping)。至此,已经使整个配电线路中未发生故障(fault)的区段恢复供电,而发生故障的C区段也得到隔离。而D区段中在因为无故障,d处的重合装置因为单边有压,在t5延时后,也可以合闸继续供电。
由上面的故障(fault)处理流程不难看出,用馈线自动化技术处理永久性故障的关键(说明:比喻事物的重要组成部分)因素,在于每个开关动作时间的配合,首先,每个重合装置因开关两侧均无压而自行跳闸(zhá)脱扣的时间,要大于重合闸时间(trc),而从线路出口到线路中段的恢复性合闸时间需要呈递进式循序合闸,即t4 > t3 > t2 > t1 > trc,反过来,由于C段失电而需要d处重合装置重合的时间,则需要从对侧变电站的出口开关处递推得到,这就需要重合装置能够识别其恢复性重合闸的方向,进而确定其合闸的时间。目前智能型重合装置,可以通过电压判据,方便地解决这个问题(Emerson)。在具有通讯功能重合闸上实现该功能时,则可以实时地将各个重合装置所采集的电气特征传给配电总站,由配电总站统一指挥各个重合装置的动作。
服务热线:400-845-0788????点击咨询

金沙澳门官网58588|金沙城娱乐场网址大全

XML 地图 | Sitemap 地图